INTEGRATED-PV IN BUILDINGS & INFRASTRUCTURES: A CARBON FOOTPRINT PERSPECTIVE

<u>Alessandro Virtuani,</u> Alejandro Borja-Block, Nicolas Wyrsch, Christoph Ballif

Lisbon, EU-PVSEC 2023

TABLE OF CONTENTS

Motivation EU-PVSEC-2021, Lisbon > On-line Methodology & data 70 65 Results - Updated figures Do North-facing BIPV facades in Europe make sense? - scope extended to cover all Europe Alessandro Virtuani,^{1,2} Andrew Fairbrother,¹ Fabiana Lisco,¹ Nicolas Wyrsch,¹ Laure-Emmanuelle Perret Aebi,¹ Christophe Ballif^{1,3} **Conclusions** 1 – École Polytechnique Fédérale de Lausanne (EPFL) – PV-Lab, Neuchâtel (Switzerland) 2 – Officina del Sole srl, Milan (Italy) 3 - CSEM - PV-Center, Neuchâtel (Switzerland) 38th EU PVSEC, 6-10 September 2021 **SOLE** PV-lab **# CSem** EPFL **OFFICINA DEL SOLE** IMT NEUCHATEL

MOTIVATION

- 1. 5 to 10 TW_p of PV to be installed in Europe by 2050 to meet climate targets
- 2. Conflicts of PV with other land uses (agriculture, forestry, etc.) are frequently reported
- 3. Installation in the **built environment** (*buildings/infrastructures*) to be favoured
- 4. Previous studies: PV-rooftop potential in EU of ~1 TWp (>2 kWp/p)
 - >> potential of other surfaces (including non-optimally oriented ones)?

5. Why PV in facades (90°-tilt) or other sub-optimal orientations?

- **S-facing façade**: more stable production throughout the year, maximize production in winter & minimize effects of curtailements in summer

- E/W-facing façades: PV generation peak shaving/shifting
- the availability of optimal-oriented surfaces may be limited (shading!)

OUTLOOK

a. We are not taking an economical perspective

See e.g. *Gholami* & *Rostvik, Energy 2020* (in some countries N-facing facades may be "profitable" on a 20-30 yrs horizon;

- b. Focus on the **carbon intensity (CI) of PV** (gCO2/kWh) deployed at different orientations/locations;
- b. Comparison to the Cl of electricity consumption in all European countries:
 >asses if PV is acting as a net CO₂ sink or source (compared to local el. mix);

CARBON INTENSITY (CI) OF SOLAR PV

- Most lifecycle CO₂ emission are attributed to HW а. manufacturing
- Little to transport, nearly no other emissions over b. lifetime
- largest Breakdown of emissions: contributions C. [kWh/m²] cells/modules <600
- **Cl intensity of a PV system** [kgCO₂-eq/kW_p] is fixed d.
- **Cl intensity of solar electricity** [gCO₂-eq/kWh] largely е. depends on siting and orientation

(factor of ~2 between Athens & Oslo)

PVGIS http://re.jrc.ec.europa.eu/pvgis/

south-oriented photovoltaic modules Yearly sum of solar electricity generated by optimally-inclined 1kW, system with a performance ratio of 0.75

EC - Joint Research Centre In collaboration with: CM SAF, www.cmsaf.eu

Legal notice: Neither the Burapean Commission ror any person acting on behalf of the Commission is responsible for the use, which might be made of this publication.

Data: **PV-GIS JRC-EC**

ENERGY YIELD [KWH/KW_P] / INSOLATION [KWH/M²*Y] FOR DIFFERENT ORIENTATIONS/LOCATIONS IN EU

Orientation/tilt

For a given location, the energy yield of a PV systems corresponds:

- S-facing facade:
- E/W-facing facades
- N-facing façades:

~72% of S-opta ~50% of S-opta ~16% of S-opta

S-opta = S-facing at optimal tilt (opta)

* Yearly sum of global irradiation incident on optimally-inclin south-oriented photovoltaic modules

**Yearly sum of solar electricity generated by optimally-inclined 1kW_p system with a performance ratio of 0.75 © European Union, 2012 PVGIS http://re.jrc.ec.europa.eu/pvgis/

Legal notice: Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use, which might be made of this publication.

Authors: Thomas Huld, Irene Pinedo-Pascua EC - Joint Research Centre In collaboration with: CM SAF, www.cmsof.eu

WHAT IS THE CARBON INTENSITY (CI) OF PV?

- Published figures are often **old/outdated**;
- Majority of PV module production in China (high CI of electricity generation -not consumptionmix ~1000 gCO2/kWh in 2019, 65% of electricity comes from coal)
- Few recent works (2021-2022):
 - R. Frischknecht: IEA-PVPS 2022 factsheet
 - V. Fthenakis, Progress in Photovoltaics 2021 (lower CI numbers)
 - et al.
- IEA-PVPS 2022 factsheet : PV 42.5 gCO2/kWh.

Assumptions: 3 kWp rooftop PV, 975 kWh/kW_p (83% of optimal tilt in Bern, CH 46°N), lifetime 30 yrs, degradation rate -0.7%/y

• In this work:

Cl of PV corrected for energy yield (site/orientation) (lifetime 30 yrs, -0.7%/y)

CARBON INTENSITY (CI) OF COUNTRY ELECTRICITY MIXES?

PV electricity in urban environments is generated close to the final user and is mostly injected in low voltage (LV) grids.

To allow a more fair comparison, we use **CI (gCO₂eq/kWh) of electricity consumed** at LV grid with upstream compensation (Well-to Wheel approach **W2W**).

Corrected for:

- electricity imports/exports between countries;
- transmission and distribution losses;
- upstream emissions caused by the extraction, refining and transport of the fuels to the power plants

Source: Scarlet et al. Applied Energy 305 (2022)

See as well: Tranberg et al., En. Strategy Review 2019 & Gholami et al. Energy, 2020

CI OF PV (OVER 30 YRS) VS CI OF COUNTRY CONSUMPTION ELECTRICITY MIX (1)

>> PV is acting as a net CO_2 sink even in N-facing facades!

CI OF PV VS CI OF COUNTRY ELECTRICITY MIX (2)

CI el. mix (NO): 780 gCO2eq/kWh High insolation /high CI-el- mix

NO: today PV, not at the first place! NO: with «greener»-PV, possibly «somewhere».

GR: today PV makes sense everywhere!

and national el. mix [tCO₂]

emissions from PV

 CO_2

CI OF PV VS CI OF COUNTRY ELECTRICITY MIXES (3) – ALL EUROPE

- Results for capital cities
- Probability distribution of the CI of PV (all European countries, <u>top &bottom</u>)
 - CI of PV 2022

11

- CI of PV 2030+ (greener PV scenario)
- Probability distribution of the CI electricity mix (all European countries, <u>bottom</u>)

CI OF PV VS CI OF COUNTRY ELECTRICITY MIXES (4)

CI of electricity mix [gCO₂-eq/kWh]

CAVEATS

1. Both CI of PV and of national electricity mixes are **«moving targets»**

>> the sooner PV is installed, the greater the value (decarbonization potential)!!!

2. We do not differentitate between BAPV (building-added) vs BIPV (building-integrated)

3. We do not offset the CO2 footprint of BIPV/I-PV modules when they are replacing other construction elements;

4. We do not take into account lower pv generation due to:

- Full integration (BIPV), i.e. higher operating temperatures
- -Use of Colored-PV or more-transparent PV (lower efficiency)

CONCLUSIONS

PV in urban/built environments - even at sub-optimal orientations – is a key-enabling decarbonization technology

- 2 Carbon intensity considerations tell us that today PV is justifible in most European countries and for most orientations (including in several cases N-facing facades);
- **3** In a «greener-PV» scenario (42.5 >> 21.2 gCO2eq/kWh) this threshold is further reduced;
- 4 CI of PV vs CI of local elect. mix may serve as a first (but not unique) discriminant to incentivize PV in buildings/infrastructures (e.g. countries phasing out **nuclear power**)
- 5 Recommendations for adopting favourable building codes for PV in buildings/infrastructures.

JOULE 2023 (accepted for pub.) Virtuani et al., Solar Everywhere - the Carbon Intensity of PV

ACKNOWLEDGEMENTS

MUITO OBRIGADO pela sua atencao!!!

- All PV-lab, CSEM & Officina del Sole staff members
- Financial support from the European Commission (and the Swiss Confederation) in the H2020-Be-Smart project (#818009) and the H-EU-SEAMLESS (#815301) projects
- AB-B acknowledges direct support from the EU Marie-Curie Marie Skłodowska-Curie Action (GA # 754354)

www.besmartproject.eu

www.seamlesspv.eu

Project funded by

Federal Department of Economic Affairs, Education and Research EAER State Secretariat for Education, Research and Innovation SERI

Swiss Confederation

WHERE DOES PV GO FIRST?

CI of national electriciy mix vs S-opta Insolation (capital city)

HOW DOES PV COMPARE TO OTHER GENERATION TECHNOLOGIES?

- Fossil & other renewables
- PV: this work (mean European value)
- Both case: large varaibility

Source: *Scarlet et al. Applied Energy 305 (2022),* NREL factsheet Report 2021

CI OF PV: BREAKDOWN OF SYSTEM CONTRIBUTIONS

IEA-PVPS Factsheet (2021)

AGAINST ...MINIMAL PV REQUIREMENTS (AS THEY ARE SET)

Source: Thomas Södestrom (csem)

Legislations demanding minimal PV requirements lead sometimes to the **«absurd» situations** where only 10 m² of PV is installed on single family houses, when 100+ m² (of well oriented PV) could be installed.

The situation of such roofs will likely be lockedup for the next 30 years.

E.g. new residential project in Switzerland

FACING THE CHALLENGES OF OUR TIME