CARBON FOOTPRINT VS RELIABILITY OF SOLAR PHOTOVOLTAIC MODULES: A NEW DILEMMA?

<u>A. Virtuani</u>['] A. Barrou, B. Paviet-Salomon, G. Cattaneo, M. Despeisse, and C. Ballif

Vienna, EU-PVSEC 2024

TABLE OF CONTENTS

- Motivation
- Carbon intensity of PV systems and of solar electricity
- Results
 - Impact of performance loss rates (PLR) & lifetime on CI of PV
 - modelling repowering scenarios
- Conclusions

MOTIVATION

....two presentations earlier.....

5CO.6.2 Maximizing Solar Sustainability: Analysis of the Leverages for Low-carbon Impact PV Manufacturing and Electricity Generation Alexis Barrou et al.

To reach low-carbon solar electricity, we need:

Low carbon **PV modules** robust, with a **long lifetime** and made with **decarbonized electricity mixes**

Here we **focus on**:

- Impact of degradation rates and lifetime on CI (carbon intensity) figures of solar PV electricity.
- 2. Assessing the impact that some design changes might influence CI of PV.

CARBON INTENSITY (CI) OF SOLAR PV SYSTEM (HARDWARE)

- a. Most lifecycle CO₂ emission are attributed to HW manufacturing
- b. Little to transport, nearly no other emissions over lifetime
- c. Breakdown of emissions: largest contributions cells (c-Si) and modules
- d. Cl intensity of a PV system $[kgCO_2-eq/kW_p]$ is fixed

:: CSem

IEA-PVPS Factsheet (2021)

CI of PV: breakdown of system contributions (with mono c-Si panels)

CARBON INTENSITY (CI) OF SOLAR PV SYSTEM

a. Technological evolution brings down CI figures of PV

>> e.g. from 16 to 4 (even 2.5) g-Si/Wp

a. Other leverages: electricity mix in manufacturing, module design,....

PV System

CARBON INTENSITY (CI) OF SOLAR PV MODULES

Trend in developing **low-C modules**...

- a. Consequence of technological progress & design solutions
- b. Manufacturing incentives, national call for tenders, Ecodesign directives (EU)...
- 900 810 750 MG-Si production 580 Poly-Si production 520 Cz-Si production 480 SolEnMatSolCel Wafer & Bricking 420 Cell production Module production Transport End-of-Life 249 244 100 110 112 6.85, China Germany 6.85'EU G.G. China cermany 6.6,EU

PV Modules

Bejat et al. PiP 2023 +EUPVSEC 2023

«CSem

CEA announcing 566-Wp module footprint of 313 kgCO2eq/kWp.

SHJ, made-in EU, wooden frame, thinner glass,

Müller et al.

2021

CARBON INTENSITY (CI) OF SOLAR PV MODULES

Several **technological trends** are leading to a reduction of the CI of PV modules: Examples:

- thinner glass > from 3.2 to 2 (or less) mm thick
- Use of semi-tempered glass
- Frameless design (wooden frames?)
- Thinner cells
- Large cells and modules

At which expense in terms of reliability?

E.g. A lot of anecdotal evidence suggests that modules with thinner non-tempered glass are more much more fragile...

Müller et al. SolEnMatSolCel 2021

EVA

Wiring

Glass

Backsheet Frame

Auxiliary material

Production waste

Energy &Infrastructure

Junction box

Note: only module manufacturing

126

62

G.G. China

6.6. Gennany

6.85'EV

117

112

59

G.G.FD

196

182

175

200

GWP in kg CO₂ eq/kW_p (IPCC 2013 100 yr) 00 00 01

6.85' China

.

CARBON INTENSITY (CI) OF SOLAR PV ELECTRICITY

- a. Cl intensity of a PV system [kgCO₂-eq/kW_p] is fixed
- **a.** Cl intensity of solar electricity [gCO₂-eq/kWh] depends on lifetime energy yield E_{lf}:
 - siting (factor of ~2 between Athens & Oslo)
 - orientation
 - lifetime and long-term performance

$$CI_{PV_el} \left[\frac{gCo2eq}{kWh}\right] = \frac{CI_{Syst} \left[\frac{gCo2eq}{kWp}\right]}{EY_{lf}(site, or, PLR) \left[\frac{kWh}{kWp}\right]}$$

Joule Virtuani et al. Joule 2023 + CelPress EUPVSEC-2023

Article

The carbon intensity of integrated photovoltaics

TABLE OF CONTENTS

- Motivation
- Carbon intensity of PV systems and of solar electricity
- Results
 - Impact of performance loss rates (PLR) & lifetime on CI of PV
 - modelling repowering scenarios
- Conclusions

ANNUAL ENERGY YIELD VS PLR (PERFORMANCE LOSS RATES)

Non-linear degradation trends, see:

Jordan et. Al PIP 2016 Virtuani et al. Solar RRL 2022

Assumptions: linear degradation rates.

REF scenario: 30 yrs lifetime, PLR 0.7%/y (0.5% generally used in business plans)

10

CI OF SOLAR ELECTRICITY VS PLR (1)

IEA-PVPS Factsheet (2021)

REF: 30 years lifetime, PLR 0.7 %/y Model: 50% reduction of GHG in module manufacturing (>> -32% of system GHG). >> CI of solar electricity vs PLR

CI OF SOLAR ELECTRICITY VS PLR (3)

CI PV-2022: 42.5 gCO2eq/kWh (rooftop PV in Central Europe)

Source: IEA-PVPS Factsheet (2021)

Increasing PLR may erode (and highly penalize) CI reduction efforts

EXTENDING LIFETIME

Lifetime directly impacts energy yield

>> hyperbolic behaviour of CI of solar electricity vs energy yield.

EXTENDING LIFETIME (2)

:: CSe

Extending lifetime from 20 to 30 years reduces CI of solar electricity by ~50%.

An additional 50% reduction will take ~30 years (30 to 60 years lifetime).

To keep in mind when planning what comes next at the end of feed-in-tariffs (FiT) era (20 years).

EFFECT OF REPOWERING SCENARIOS ON THE CI OF SOLAR PV ELECTRICITY

2 accelerated degrad. scenarios (mild/severe) followed by module repowering @ year 10: >> add to model CI of new set of modules

CONCLUSIONS

Key take-away message:

we should not reduce the CI of modules (other components or full systems) at the expense of reliability and long-term performance.

Focus should be on:

1. *risk-neutral* technological progress.

2. not on design solutions that endanger reliability and durability. (BOM & design changes need to be carefully assessed)

Extending lifetime of **PV plants in FiT regime** (20 to 30 years) – if still working well - might be meaningful from a C footprint perspective.

ON THE TOPIC FROM OUR GROUP....

TUE

4BO.6.2 **30+ Years of Operation** – A Comprehensive Review of the Long-Term Performance of the Mont-Soleil PV System and its Peers Hugo Quest et al.

WED (this session) CO.6.2 Maximizing Solar Sustainability: Analysis of the Leverages for Lowcarbon Impact PV Manufacturing and Electricity Generation Alexis Barrou et al. (this session)

THU 5DV.2.28 Are **Bio-Based Materials Suitable for PV**? Lison Marthey et al.

ACKNOWLEDGEMENTS

Vielen Dank für Ihre Aufmerksamkeit!

- All PV-lab & CSEM staff members
- Financial support from the European Commission (and the Swiss Confederation) in the H-EU-SEAMLESS (#815301) projects

www.seamlesspv.eu

Project funded by

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Federal Department of Economic Affairs, Education and Research EAER State Secretariat for Education, Research and Innovation SERI

CI OF SOLAR ELECTRICITY VS PLR (2)

For PLR > 4 %/y, a correction is needed to the model, reflecting the fact that the energy yield cannot be negative (<0).

Joule

q/kWh]

mix [gCO₂

÷

country

Clot

The carbon intensity of integrated – photovoltaics

Virtuani et al. JOULE 2023 + EUPVSEC 2023

Alessandro Virtuani, Alejandro Borja Block, Nicolas Wyrsch, Christophe Ballif

alessandro.virtuani@csem.ch

Highlights

Deployment of solar PVs should primarily occur in buildings and infrastructures

The C footprint of PV facades is lower than electricity mixes for most EU countries

« csem

EPFL

Most of the time, this is true for north-facing PV facades too

PV in facades clearly supports a transition toward a C-neutral electricity mix

HOW DOES PV COMPARE TO OTHER GENERATION TECHNOLOGIES?

Fossil & other renewables

Virtuani et al. JOULE 2023

- PV: this work (mean European value)
- Both case: large varaibility

FACING THE CHALLENGES OF OUR TIME